3. Neural Network Layers
3.1
BayesianModule
Abstract base for Bayesian-aware modules in JAX. Provides mechanisms to track if a module is Bayesian and control parameter updates through freezing/unfreezing.
Notes
All derived classes must implement freeze and kl_cost to
handle parameter management and compute the KL divergence cost.
Source code in illia/nn/jax/base.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | |
3.1.1
__init__(**kwargs)
Initialize the Bayesian module with default flags.
Sets frozen to False and is_bayesian to True.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/jax/base.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | |
3.1.2
freeze()
abstractmethod
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Must be implemented by all subclasses.
Source code in illia/nn/jax/base.py
38 39 40 41 42 43 44 45 46 47 48 49 50 | |
3.1.3
kl_cost()
abstractmethod
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Array, int]
|
tuple[jax.Array, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Notes
Must be implemented by all subclasses.
Source code in illia/nn/jax/base.py
63 64 65 66 67 68 69 70 71 72 73 74 | |
3.1.4
unfreeze()
Unfreeze the module by setting its frozen flag to False.
Allows parameters to be sampled and updated again.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/jax/base.py
52 53 54 55 56 57 58 59 60 61 | |
3.2
Conv1d
Bayesian 1D convolutional layer with optional weight and bias priors. Behaves like a standard Conv1d but treats weights and bias as random variables sampled from specified distributions. Parameters become fixed when the layer is frozen.
Source code in illia/nn/jax/conv1d.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | |
3.2.1
__call__(inputs)
Performs a forward pass through the Bayesian Convolution 1D layer. If the layer is not frozen, it samples weights and bias from their respective distributions. If the layer is frozen and the weights or bias are not initialized, it also performs sampling.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Array
|
Input tensor to the layer with shape (batch, channels, length). |
required |
Returns:
| Type | Description |
|---|---|
Array
|
Output array after convolution with optional bias added. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights or bias are undefined. |
Source code in illia/nn/jax/conv1d.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | |
3.2.2
__init__(input_channels, output_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, weights_distribution=None, bias_distribution=None, use_bias=True, rngs=nnx.Rngs(0), **kwargs)
Initializes a Bayesian 1D convolutional layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_channels
|
int
|
Number of input feature channels. |
required |
output_channels
|
int
|
Number of output feature channels. |
required |
kernel_size
|
int
|
Size of the convolution kernel. |
required |
stride
|
int
|
Stride of the convolution operation. |
1
|
padding
|
int
|
Amount of zero-padding on both sides. |
0
|
dilation
|
int
|
Spacing between kernel elements. |
1
|
groups
|
int
|
Number of blocked connections between input and output. |
1
|
weights_distribution
|
Optional[GaussianDistribution]
|
Distribution to initialize weights. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
Distribution to initialize bias. |
None
|
use_bias
|
bool
|
Whether to include a bias term. |
True
|
rngs
|
Rngs
|
Random number generators for reproducibility. |
Rngs(0)
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/jax/conv1d.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | |
3.2.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/jax/conv1d.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | |
3.2.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Array, int]
|
tuple[jax.Array, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/jax/conv1d.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | |
3.3
Conv2d
Bayesian 2D convolutional layer with optional weight and bias priors. Behaves like a standard Conv2d but treats weights and bias as random variables sampled from specified distributions. Parameters become fixed when the layer is frozen.
Source code in illia/nn/jax/conv2d.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | |
3.3.1
__call__(inputs)
Performs a forward pass through the Bayesian Convolution 2D layer. If the layer is not frozen, it samples weights and bias from their respective distributions. If the layer is frozen and the weights or bias are not initialized, it also performs sampling.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Array
|
Input array with shape (batch, channels, height, width). |
required |
Returns:
| Type | Description |
|---|---|
Array
|
Output array after convolution with optional bias addition. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights or bias are undefined. |
Source code in illia/nn/jax/conv2d.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | |
3.3.2
__init__(input_channels, output_channels, kernel_size, stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, weights_distribution=None, bias_distribution=None, use_bias=True, rngs=nnx.Rngs(0), **kwargs)
Initializes a Bayesian 2D convolutional layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_channels
|
int
|
Number of input feature channels. |
required |
output_channels
|
int
|
Number of output feature channels. |
required |
kernel_size
|
int | tuple[int, int]
|
Convolution kernel size. Int is converted to tuple. |
required |
stride
|
tuple[int, int]
|
Stride of the convolution operation. |
(1, 1)
|
padding
|
tuple[int, int]
|
Tuple specifying zero-padding for height and width. |
(0, 0)
|
dilation
|
tuple[int, int]
|
Spacing between kernel elements. |
(1, 1)
|
groups
|
int
|
Number of blocked connections between input and output. |
1
|
weights_distribution
|
Optional[GaussianDistribution]
|
Distribution to initialize weights. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
Distribution to initialize bias. |
None
|
use_bias
|
bool
|
Whether to include a bias term. |
True
|
rngs
|
Rngs
|
Random number generators for reproducibility. |
Rngs(0)
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/jax/conv2d.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | |
3.3.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/jax/conv2d.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | |
3.3.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Array, int]
|
tuple[jax.Array, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/jax/conv2d.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | |
3.4
Embedding
Bayesian embedding layer with optional padding and max-norm constraints. Each embedding vector is sampled from a specified weight distribution. If the layer is frozen, embeddings are fixed and gradients are stopped.
Source code in illia/nn/jax/embedding.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | |
3.4.1
__call__(inputs)
Perform a forward pass using current embedding weights.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Array
|
Array of indices into the embedding matrix. |
required |
Returns:
| Type | Description |
|---|---|
Array
|
Array of shape [*, embeddings_dim] containing the embedding |
Array
|
vectors corresponding to the input indices. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights are undefined. |
Notes
Embeddings at padding_idx are zeroed out, and vectors exceeding max_norm are renormalized if specified.
Source code in illia/nn/jax/embedding.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | |
3.4.2
__init__(num_embeddings, embeddings_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, weights_distribution=None, rngs=nnx.Rngs(0), **kwargs)
Initialize a Bayesian embedding layer with optional constraints. Sets up the embedding weight distribution and samples initial values.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num_embeddings
|
int
|
Size of the embedding dictionary. |
required |
embeddings_dim
|
int
|
Dimension of each embedding vector. |
required |
padding_idx
|
Optional[int]
|
Index whose embeddings are ignored in gradient. |
None
|
max_norm
|
Optional[float]
|
Maximum norm for each embedding vector. |
None
|
norm_type
|
float
|
p value for the p-norm in max_norm option. |
2.0
|
scale_grad_by_freq
|
bool
|
Scale gradients by inverse word frequency. |
False
|
weights_distribution
|
Optional[GaussianDistribution]
|
Distribution to initialize embeddings. |
None
|
rngs
|
Rngs
|
Random number generators for reproducibility. |
Rngs(0)
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/jax/embedding.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | |
3.4.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/jax/embedding.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | |
3.4.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Array, int]
|
tuple[jax.Array, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/jax/embedding.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | |
3.5
Linear
Bayesian linear (fully connected) layer with optional weight and bias priors. Functions like a standard linear layer but treats weights and bias as probabilistic variables. Freezing the layer fixes parameters and stops gradient computation.
Source code in illia/nn/jax/linear.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | |
3.5.1
__call__(inputs)
Perform a forward pass using current weights and bias. Samples new parameters if the layer is not frozen.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Array
|
Input array with shape [*, input_size]. |
required |
Returns:
| Type | Description |
|---|---|
Array
|
Output array with shape [*, output_size]. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights or bias are undefined. |
Source code in illia/nn/jax/linear.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | |
3.5.2
__init__(input_size, output_size, weights_distribution=None, bias_distribution=None, use_bias=True, precision=None, dot_general=lax.dot_general, rngs=nnx.Rngs(0), **kwargs)
Initialize a Bayesian linear layer with optional priors for weights and bias. Samples initial parameter values from the specified distributions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_size
|
int
|
Number of input features. |
required |
output_size
|
int
|
Number of output features. |
required |
weights_distribution
|
Optional[GaussianDistribution]
|
Distribution for weights. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
Distribution for bias. |
None
|
use_bias
|
bool
|
Whether to include a bias term. |
True
|
precision
|
PrecisionLike
|
Precision for dot product computations. |
None
|
dot_general
|
DotGeneralT
|
Function for generalized dot products. |
dot_general
|
rngs
|
Rngs
|
Random number generators for reproducibility. |
Rngs(0)
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/jax/linear.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | |
3.5.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/jax/linear.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | |
3.5.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Array, int]
|
tuple[jax.Array, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/jax/linear.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | |
3.6
LSTM
Bayesian LSTM layer with embedding and probabilistic weights. All weights and biases are treated as random variables sampled from Gaussian distributions. Freezing the layer fixes parameters and stops gradient computation.
Source code in illia/nn/jax/lstm.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | |
3.6.1
__call__(inputs, init_states=None)
Perform a forward pass through the Bayesian LSTM layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Array
|
Token indices with shape [batch, seq_len, 1]. |
required |
init_states
|
Optional[tuple[Array, Array]]
|
Optional tuple of initial hidden and cell states. |
None
|
Returns:
| Type | Description |
|---|---|
Array
|
Tuple containing: |
tuple[Array, Array]
|
|
tuple[Array, tuple[Array, Array]]
|
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights are undefined. |
Source code in illia/nn/jax/lstm.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | |
3.6.2
__init__(num_embeddings, embeddings_dim, hidden_size, output_size, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, rngs=nnx.Rngs(0), **kwargs)
Initialize a Bayesian LSTM layer with embedding and probabilistic weights. Sets up all gate distributions and samples initial weights.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num_embeddings
|
int
|
Vocabulary size. |
required |
embeddings_dim
|
int
|
Dimension of token embeddings. |
required |
hidden_size
|
int
|
Number of units in LSTM hidden state. |
required |
output_size
|
int
|
Size of the output layer. |
required |
padding_idx
|
Optional[int]
|
Index in embeddings to ignore (optional). |
None
|
max_norm
|
Optional[float]
|
Maximum norm for embeddings (optional). |
None
|
norm_type
|
float
|
p-norm for max_norm computation. |
2.0
|
scale_grad_by_freq
|
bool
|
Scale gradients by token frequency. |
False
|
rngs
|
Rngs
|
Random number generators for reproducibility. |
Rngs(0)
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/jax/lstm.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | |
3.6.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/jax/lstm.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | |
3.6.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Array, int]
|
tuple[jax.Array, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/jax/lstm.py
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | |