9. Neural Network
This module contains the code for the bayesian Conv1d.
9.1
Conv1d(input_channels, output_channels, kernel_size, stride=1, padding='VALID', dilation=1, groups=1, data_format='NWC', weights_distribution=None, bias_distribution=None, use_bias=True, **kwargs)
This class is the bayesian implementation of the Conv1d class.
Initializes a Bayesian Conv1d layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_channels
|
int
|
The number of channels in the input image. |
required |
output_channels
|
int
|
The number of channels produced by the convolution. |
required |
kernel_size
|
int
|
The size of the convolving kernel. |
required |
stride
|
int
|
The stride of the convolution. |
1
|
padding
|
str
|
The padding added to all four sides of the input. Can be 'VALID' or 'SAME'. |
'VALID'
|
dilation
|
int
|
The spacing between kernel elements. |
1
|
groups
|
int
|
The number of blocked connections from input channels to output channels. |
1
|
data_format
|
Optional[str]
|
The data format for the convolution, either 'NWC' or 'NCW'. |
'NWC'
|
weights_distribution
|
Optional[GaussianDistribution]
|
The Gaussian distribution for the weights, if applicable. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
The Gaussian distribution for the bias, if applicable. |
None
|
use_bias
|
bool
|
Whether to include a bias term. |
True
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Source code in illia/nn/tf/conv1d.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
9.1.1
call(inputs)
Performs a forward pass through the Bayesian Convolution 1D layer. If the layer is not frozen, it samples weights and bias from their respective distributions. If the layer is frozen and the weights or bias are not initialized, it also performs sampling.str
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Tensor
|
Input tensor to the layer. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Output tensor after passing through the layer. |
Source code in illia/nn/tf/conv1d.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
9.1.2
freeze()
Freezes the current module and all submodules that are instances of BayesianModule. Sets the frozen state to True.
Source code in illia/nn/tf/conv1d.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
9.1.3
kl_cost()
Computes the Kullback-Leibler (KL) divergence cost for the layer's weights and bias.
Returns:
Type | Description |
---|---|
Tensor
|
Tuple containing KL divergence cost and total number of |
int
|
parameters. |
Source code in illia/nn/tf/conv1d.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
This module contains the code for the bayesian Conv2d.
9.2
Conv2d(input_channels, output_channels, kernel_size, stride=1, padding='VALID', dilation=None, groups=1, data_format='NHWC', weights_distribution=None, bias_distribution=None, use_bias=True, **kwargs)
This class is the bayesian implementation of the Conv2d class.
Initializes a Bayesian Conv2d layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_channels
|
int
|
The number of channels in the input image. |
required |
output_channels
|
int
|
The number of channels produced by the convolution. |
required |
kernel_size
|
int | list[int]
|
The size of the convolving kernel. |
required |
stride
|
int | list[int]
|
The stride of the convolution. |
1
|
padding
|
str | list[int]
|
The padding added to all four sides of the input. Can be 'VALID' or 'SAME'. |
'VALID'
|
dilation
|
Optional[int | list[int]]
|
The spacing between kernel elements. |
None
|
groups
|
int
|
The number of blocked connections from input channels to output channels. |
1
|
data_format
|
Optional[str]
|
The data format for the convolution, either 'NHWC' or 'NCHW'. |
'NHWC'
|
weights_distribution
|
Optional[GaussianDistribution]
|
The Gaussian distribution for the weights, if applicable. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
The Gaussian distribution for the bias, if applicable. |
None
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Source code in illia/nn/tf/conv2d.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
9.2.1
call(inputs)
Performs a forward pass through the Bayesian Convolution 2D layer. If the layer is not frozen, it samples weights and bias from their respective distributions. If the layer is frozen and the weights or bias are not initialized, it also performs sampling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Tensor
|
Input tensor to the layer. Dimensions: [batch, input channels, input width, input height]. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Output tensor after passing through the layer. Dimensions: [batch, output channels, output width, output height]. |
Source code in illia/nn/tf/conv2d.py
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
9.2.2
freeze()
Freezes the current module and all submodules that are instances of BayesianModule. Sets the frozen state to True.
Source code in illia/nn/tf/conv2d.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
9.2.3
kl_cost()
Computes the Kullback-Leibler (KL) divergence cost for the layer's weights and bias.
Returns:
Type | Description |
---|---|
Tensor
|
Tuple containing KL divergence cost and total number of |
int
|
parameters. |
Source code in illia/nn/tf/conv2d.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
This module contains the code for Embedding Bayesian layer.
9.3
Embedding(num_embeddings, embeddings_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, weights_distribution=None, **kwargs)
This class is the bayesian implementation of the Embedding class.
This method is the constructor of the embedding class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_embeddings
|
int
|
Size of the dictionary of embeddings. |
required |
embeddings_dim
|
int
|
The size of each embedding vector. |
required |
padding_idx
|
Optional[int]
|
If specified, the entries at padding_idx do not contribute to the gradient. |
None
|
max_norm
|
Optional[float]
|
If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. |
None
|
norm_type
|
float
|
The p of the p-norm to compute for the max_norm option. |
2.0
|
scale_grad_by_freq
|
bool
|
If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. |
False
|
sparse
|
bool
|
If True, gradient w.r.t. weight matrix will be a sparse tensor. |
False
|
weights_distribution
|
Optional[GaussianDistribution]
|
The Gaussian distribution for the weights, if applicable. |
None
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Source code in illia/nn/tf/embedding.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
9.3.1
call(inputs)
Performs a forward pass through the Bayesian Embedding layer.
Samples weights from their posterior distributions if the layer is not frozen. If frozen and not initialized, samples them once.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Tensor
|
input tensor. Dimensions: [batch, *]. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
Module has been frozen with undefined weights. |
Returns:
Type | Description |
---|---|
Tensor
|
Output tensor after linear transformation. |
Source code in illia/nn/tf/embedding.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
9.3.2
freeze()
Freezes the current module and all submodules that are instances of BayesianModule. Sets the frozen state to True.
Source code in illia/nn/tf/embedding.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
9.3.3
kl_cost()
Computes the Kullback-Leibler (KL) divergence cost for the layer's weights.
Returns:
Type | Description |
---|---|
Tensor
|
Tuple containing KL divergence cost and total number of |
int
|
parameters. |
Source code in illia/nn/tf/embedding.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
This module contains the code for Linear Bayesian layer.
9.4
Linear(input_size, output_size, weights_distribution=None, bias_distribution=None, use_bias=True, **kwargs)
This class is the bayesian implementation of the Linear class.
This is the constructor of the Linear class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_size
|
int
|
Input size of the linear layer. |
required |
output_size
|
int
|
Output size of the linear layer. |
required |
weights_distribution
|
Optional[GaussianDistribution]
|
The Gaussian distribution for the weights, if applicable. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
The Gaussian distribution for the bias, if applicable. |
None
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Source code in illia/nn/tf/linear.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
9.4.1
call(inputs)
Performs a forward pass through the Bayesian Linear layer.
Samples weights and bias from their posterior distributions if the layer is not frozen. If frozen and not initialized, samples them once.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Tensor
|
input tensor. Dimensions: [batch, *]. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
Module has been frozen with undefined weights. |
Returns:
Type | Description |
---|---|
Tensor
|
Output tensor after linear transformation. |
Source code in illia/nn/tf/linear.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
9.4.2
freeze()
Freezes the current module and all submodules that are instances of BayesianModule. Sets the frozen state to True.
Source code in illia/nn/tf/linear.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
9.4.3
kl_cost()
Computes the Kullback-Leibler (KL) divergence cost for the layer's weights and bias.
Returns:
Type | Description |
---|---|
Tensor
|
Tuple containing KL divergence cost and total number of |
int
|
parameters. |
Source code in illia/nn/tf/linear.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
This module contains the code for the bayesian LSTM.
9.5
LSTM(num_embeddings, embeddings_dim, hidden_size, output_size, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, **kwargs)
This class is the bayesian implementation of the TensorFlow LSTM layer.
Source code in illia/nn/tf/lstm.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
9.5.1
call(inputs, init_states=None)
Performs a forward pass through the Bayesian LSTM layer. If the layer is not frozen, it samples weights and bias from their respective distributions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Tensor
|
Input tensor with token indices. Shape: [batch, seq_len, 1] |
required |
init_states
|
Optional[tuple[Tensor, Tensor]]
|
Optional initial hidden and cell states |
None
|
Returns:
Type | Description |
---|---|
tuple[Tensor, tuple[Tensor, Tensor]]
|
Tuple of (output, (hidden_state, cell_state)) |
Source code in illia/nn/tf/lstm.py
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
9.5.2
freeze()
Freezes the current module and all submodules that are instances of BayesianModule. Sets the frozen state to True.
Source code in illia/nn/tf/lstm.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
9.5.3
kl_cost()
Computes the Kullback-Leibler (KL) divergence cost for the layer's weights and bias.
Returns:
Type | Description |
---|---|
Tensor
|
tuple containing KL divergence cost and total number of |
int
|
parameters. |
Source code in illia/nn/tf/lstm.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|