6. Neural Network Layers
6.1
BayesianModule
Abstract base for Bayesian-aware modules in PyTorch. Provides mechanisms to track if a module is Bayesian and control parameter updates through freezing/unfreezing.
Notes
All derived classes must implement freeze and kl_cost to
handle parameter management and compute the KL divergence cost.
Source code in illia/nn/torch/base.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
6.1.1
__init__(**kwargs)
Initialize the Bayesian module with default flags.
Sets frozen to False and is_bayesian to True.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/torch/base.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | |
6.1.2
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Must be implemented by all subclasses.
Source code in illia/nn/torch/base.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | |
6.1.3
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Tensor, int]
|
tuple[torch.Tensor, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Notes
Must be implemented by all subclasses.
Source code in illia/nn/torch/base.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
6.1.4
unfreeze()
Unfreeze the module by setting its frozen flag to False.
Allows parameters to be sampled and updated again.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/torch/base.py
54 55 56 57 58 59 60 61 62 63 64 65 | |
6.2
Conv1d
Bayesian 1D convolutional layer with optional weight and bias priors. Behaves like a standard Conv1d but treats weights and bias as random variables sampled from specified distributions. Parameters become fixed when the layer is frozen.
Source code in illia/nn/torch/conv1d.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | |
6.2.1
__init__(input_channels, output_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, weights_distribution=None, bias_distribution=None, use_bias=True, **kwargs)
Initializes a Bayesian 1D convolutional layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_channels
|
int
|
Number of input channels. |
required |
output_channels
|
int
|
Number of output channels. |
required |
kernel_size
|
int
|
Size of the convolution kernel. |
required |
stride
|
int
|
Stride of the convolution. |
1
|
padding
|
int
|
Padding added to both sides of the input. |
0
|
dilation
|
int
|
Spacing between kernel elements. |
1
|
groups
|
int
|
Number of blocked connections. |
1
|
weights_distribution
|
Optional[GaussianDistribution]
|
Distribution for the weights. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
Distribution for the bias. |
None
|
use_bias
|
bool
|
Whether to include a bias term. |
True
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/torch/conv1d.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | |
6.2.2
forward(inputs)
Performs a forward pass through the Bayesian Convolution 1D layer. If the layer is not frozen, it samples weights and bias from their respective distributions. If the layer is frozen and the weights or bias are not initialized, it also performs sampling.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Tensor
|
Input tensor to the layer with shape (batch, input channels, input width, input height). |
required |
Returns:
| Type | Description |
|---|---|
Tensor
|
Output tensor after passing through the layer with shape (batch, output channels, output width, output height). |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights or bias are undefined. |
Source code in illia/nn/torch/conv1d.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | |
6.2.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/torch/conv1d.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
6.2.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Tensor, int]
|
tuple[torch.Tensor, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/torch/conv1d.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | |
6.3
Conv2d
Bayesian 2D convolutional layer with optional weight and bias priors. Behaves like a standard Conv2d but treats weights and bias as random variables sampled from specified distributions. Parameters become fixed when the layer is frozen.
Source code in illia/nn/torch/conv2d.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | |
6.3.1
__init__(input_channels, output_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, weights_distribution=None, bias_distribution=None, use_bias=True, **kwargs)
Initializes a Bayesian 2D convolutional layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
kernel_size
|
int | tuple[int, int]
|
Size of the convolving kernel. |
required |
stride
|
int | tuple[int, int]
|
Stride of the convolution. Deafults to 1. |
1
|
padding
|
int | tuple[int, int]
|
Padding added to all four sides of the input. |
0
|
dilation
|
int | tuple[int, int]
|
Spacing between kernel elements. |
1
|
groups
|
int
|
Number of blocked connections from input channels to output channels. |
1
|
weights_distribution
|
Optional[GaussianDistribution]
|
The distribution for the weights. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
The distribution for the bias. |
None
|
use_bias
|
bool
|
Whether to include a bias term. |
True
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/torch/conv2d.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | |
6.3.2
forward(inputs)
Performs a forward pass through the Bayesian Convolution 2D layer. If the layer is not frozen, it samples weights and bias from their respective distributions. If the layer is frozen and the weights or bias are not initialized, it also performs sampling.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Tensor
|
Input tensor to the layer with shape (batch, input channels, input width, input height). |
required |
Returns:
| Type | Description |
|---|---|
Tensor
|
Output tensor after passing through the layer with shape (batch, output channels, output width, output height). |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights or bias are undefined. |
Source code in illia/nn/torch/conv2d.py
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | |
6.3.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/torch/conv2d.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | |
6.3.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Tensor, int]
|
tuple[torch.Tensor, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/torch/conv2d.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | |
6.4
Embedding
This class is the bayesian implementation of the Embedding class.
Source code in illia/nn/torch/embedding.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | |
6.4.1
__init__(num_embeddings, embeddings_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, weights_distribution=None, **kwargs)
Initializes a Embedding layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num_embeddings
|
int
|
size of the dictionary of embeddings. |
required |
embeddings_dim
|
int
|
the size of each embedding vector. |
required |
padding_idx
|
Optional[int]
|
If specified, the entries at padding_idx do not contribute to the gradient. |
None
|
max_norm
|
Optional[float]
|
If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm. |
None
|
norm_type
|
float
|
The p of the p-norm to compute for the max_norm option. |
2.0
|
scale_grad_by_freq
|
bool
|
If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. |
False
|
sparse
|
bool
|
If True, gradient w.r.t. weight matrix will be a sparse tensor. |
False
|
weights_distribution
|
Optional[GaussianDistribution]
|
distribution for the weights of the layer. |
None
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/torch/embedding.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | |
6.4.2
forward(inputs)
This method is the forward pass of the layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Tensor
|
input tensor. Dimensions: [*]. |
required |
Returns:
| Type | Description |
|---|---|
Tensor
|
outputs tensor. Dimension: [*, embedding dim]. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights are undefined. |
Source code in illia/nn/torch/embedding.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | |
6.4.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/torch/embedding.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | |
6.4.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Tensor, int]
|
tuple[torch.Tensor, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/torch/embedding.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | |
6.5
Linear
This class is the bayesian implementation of the torch Linear layer.
Source code in illia/nn/torch/linear.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | |
6.5.1
__init__(input_size, output_size, weights_distribution=None, bias_distribution=None, use_bias=True, **kwargs)
Initializes a Linear layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_size
|
int
|
Input size of the linear layer. |
required |
output_size
|
int
|
Output size of the linear layer. |
required |
weights_distribution
|
Optional[GaussianDistribution]
|
GaussianDistribution for the weights of the layer. Defaults to None. |
None
|
bias_distribution
|
Optional[GaussianDistribution]
|
GaussianDistribution for the bias of the layer. Defaults to None. |
None
|
use_bias
|
bool
|
Whether to include a bias term. |
True
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/torch/linear.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | |
6.5.2
forward(inputs)
This method is the forward pass of the layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Tensor
|
input tensor. Dimensions: [batch, *]. |
required |
Returns:
| Type | Description |
|---|---|
Tensor
|
outputs tensor. Dimensions: [batch, *]. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights or bias are undefined. |
Source code in illia/nn/torch/linear.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | |
6.5.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/torch/linear.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | |
6.5.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Tensor, int]
|
tuple[torch.Tensor, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/torch/linear.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | |
6.6
LSTM
Bayesian LSTM layer with embedding and probabilistic weights. All weights and biases are sampled from Gaussian distributions. Freezing the layer fixes parameters and stops gradient computation.
Source code in illia/nn/torch/lstm.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | |
6.6.1
__init__(num_embeddings, embeddings_dim, hidden_size, output_size, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, **kwargs)
Initializes the Bayesian LSTM layer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num_embeddings
|
int
|
Size of the embedding dictionary. |
required |
embeddings_dim
|
int
|
Dimensionality of each embedding vector. |
required |
hidden_size
|
int
|
Number of hidden units in the LSTM. |
required |
output_size
|
int
|
Size of the final output. |
required |
padding_idx
|
Optional[int]
|
Index to ignore in embeddings. |
None
|
max_norm
|
Optional[float]
|
Maximum norm for embedding vectors. |
None
|
norm_type
|
float
|
Norm type used for max_norm. |
2.0
|
scale_grad_by_freq
|
bool
|
Scale gradient by inverse frequency. |
False
|
sparse
|
bool
|
Use sparse embedding updates. |
False
|
**kwargs
|
Any
|
Extra arguments passed to the base class. |
{}
|
Returns:
| Type | Description |
|---|---|
None
|
None. |
Notes
Gaussian distributions are used by default if none are provided.
Source code in illia/nn/torch/lstm.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | |
6.6.2
forward(inputs, init_states=None)
Performs a forward pass through the Bayesian LSTM layer. If the layer is not frozen, it samples weights and bias from their respective distributions. If the layer is frozen and the weights or bias are not initialized, it also performs sampling.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
inputs
|
Tensor
|
Input tensor to the layer with shape [batch, input channels, input width, input height]. |
required |
Returns:
| Type | Description |
|---|---|
tuple[Tensor, tuple[Tensor, Tensor]]
|
Output tensor after passing through the layer with shape [batch, output channels, output width, output height]. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the layer is frozen but weights are undefined. |
Source code in illia/nn/torch/lstm.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | |
6.6.3
freeze()
Freeze the module's parameters to stop gradient computation. If weights or biases are not sampled yet, they are sampled first. Once frozen, parameters are not resampled or updated.
Returns:
| Type | Description |
|---|---|
None
|
None. |
Source code in illia/nn/torch/lstm.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | |
6.6.4
kl_cost()
Compute the KL divergence cost for all Bayesian parameters.
Returns:
| Type | Description |
|---|---|
tuple[Tensor, int]
|
tuple[torch.Tensor, int]: A tuple containing the KL divergence cost and the total number of parameters in the layer. |
Source code in illia/nn/torch/lstm.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | |